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FITTING FUNCTIONAL EQUATIONS TO EXPERIMENTAL DATA

H. Kagiwada and R. Kalaba*

The RAND Corporation, Santa Monica, California

1. Introduction

S2C S

Much of mathematical analysis is devoted to the

problem of predicting the future behavior of a systenm,
given a descriptive equation and the current state. This
is surprising since a basic scientific problem in such
fields as physics, engineering, biology and economics is
that of determining the structure of a system, given
various observations over time [1-6]. 1In the past, such
system identification or inverse problems were solved by
trialland error or by simple approximations. Modern
computing machines have dramatically altered the picture
with their ability to integrate systems of several
thousand differeatial equations given a complete set of
initial conditions. Many types of functional equations
may be converted into systems of ordinary diffefential
equations. This means that wide classes of direct

* problems can be solved as initial-value problems.

* . . .

Any views expressed in this paper are those of the
authors. They should not be interpreted as reflecting the
views of The RAND Corporation or the official opinion or
i . policy of any of its governmental or private research
j sponsors. Papers are reproduced by The RAND Corporation
as a courtesy to members of its staff.
¢ This paper was prepared for prescntation at the Hawaii
International Conference on System Sciences, Honolulu,
January 29-31, 1968.




This also means that & great many inverse problems
may be computationally resolved. Let the equations which

describe a particular prwcess be a system of differential
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equations. The unknown structure of the process is
reflected in unknown system parameters which appear in
tho differential equations or in the initial conditions,
These parametuors are to be estimated on the basis of
observations of the process. The identification problem

takes the form of a nonlinear boundary-value problem.

L This can be solved by a variety ot methods. One that

¢ ' has been shown to be quite effective is described below,.

% 2. Illustrative Example

Consider a system undergoing a process which may be

described by the scalar differential equation

P (1) z = glx, a),

where a is an unknown system parameter, and the initial

state
(2) x(0) =c

is also unknown. Suppose that at the time t1 the system

] is observed to be in the state bi’ i=1,2, ..., N; tin =ty
Neither the observations nor the theory of Eq. (1) need

be perfect, 80 in general

t (3) x(t,) = b, 1=1,2, ..., N,
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To tit the theoretical equation (1) to the experimental
data, we wish to determine the constants a and ¢ so that

we minimize §, the sum of the squares of the deviations
N
1) s =) [xtty) - oyl
1=1
Frequently this can be done using a quadratically

convergent successive approximation scheme. Let xu(t),
a, and Co be the current approximatjons to the optimal
function x(t) and the parameters a and c. The new

approximations are obtained by consi 2ring the linearized

equation
€)) X, = glxg, ag) + (x; = x4)g, (x4, a5)
+ (a, - ao)ga(xo, ag).
The solution of this equation may be written in the form
® x(0) = p(t) + e () + @),  OStSt,

where the functions p, h, and q are solutions of the linear

initial-value problems

(7) p= gx(xo, ao)p + 8(xg, ao) - %, g‘(xo, ao)
- 258, (xq, 3g), p(0) =0,

(8) h = g, (x5, 8g)h, h(0) = 1,

(9) q = Bx(Xgr 809)Q + B, (x5, 85), Q(0) = 0, t; ~ t ~ t.
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The tunctions p, h and q are readily determined numerically,
Then the constants <y and a, are determined by minimizing

the expression
N 2
(10) E = l {p(ti) + clh(ti) + nIQ(ti) - bi} ,
i}l
which involves solving the linear algebraic equations
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The process is repeated until a sufficiently small change

takes place from one step to the next. In this way,

frequently, the differential equation may be fitted to

the experimental data [4].

3. Other Functional Equations

Systems o! ordinary differential equations may be
fitted to the data in the manner just described. 8o may

tqggtional equations which can be reduced exactly or

T gt

approximately to systems of ordinary differential equations.

i The wave equation, for example,
(12) u,, = c2(x)u
tt xX

can be reduced to ordinary differential equations either

by taking Laplace transforms or by using the semi-
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discretization technique. This leads to the possibility
of identifying inhomogeneous media through observation i
of wave propagation processes [{7]. The reduction of

differential-difference equations to ordinary differential .
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equations and the estimation of time lags are discussed : ‘
in [5]. Even integral equations may be converted into
tnitial vaiue problems [8]; this leads to the computational

solution of many inverse problems in multiple scattering

(e}.

4, Discuesion

The leart rquares criterion of the above example may

be replaced by some other criterion, such as a minimax

condition [9], depending on the statistical nature of 1

the problem and any a priori estimates that are available.
1f the nonlinear Eq. (1) represents a large system

of differential equations with complicated right-hand

i iac

sides, the forming of the partial derivaiives needed in ;
the linearized equations could be a formidable task. A
method for the computer evaluation of partial derivatives ‘
of functions given analytically has been described by
Wengert [10] and shown to be useful in orbit determi-
nation [11].

The linearized differential equations may be unstable.
The method of invariant imbedding provides a reformulati/n
in terms of an initial-value problem for stable differ-
ential equations [12]. Invariant imbecuing also obviates ]
the need to solve linear algebraic equations, another

source of difficulty, by enabling the unknown constants

to be directly determined,

b
|
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If the data are continuously received, an invariant
imbedding method for sequential filtering may be employed
{13, 14)}.
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